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Abstract

This paper presents a rudimentary model of collaboration with the
aim to understand the conditions under which groups of scientists
will endogenously form optimal collaborative groups. By analyzing
the model with computer simulations, I uncover three lessons for col-
laborative groups. First, in reducing the cost borne by scientists from
collaborating, one benefits the members of the group. Second, increas-
ing the number of potential collaborative partners benefits all those
involved in a collaborative group. Finally and counter-intuitively, this
model suggests that groups do better when scientists avoid experi-
menting with new collaborative interactions.

Collaboration involves tackling problems together. Different individuals
might bring diverse perspectives to a problem, and by working together they
come to solution that none would have reached alone. Collaborating comes
with a cost, however. One must expend effort communicate one’s approach
to another. Collaborations require agreement about the strategies for tack-
ling the problem, and one’s collaborator might be difficult or unhelpful. As
groups grow the possibility of other epistemic pathologies like group-think
and collective ignorance arise.

Whether collaboration is helpful or harmful depends on how these costs
and benefits are weighed. Much of the research on collaboration is focused
on enumerating, theorizing, and comparing these various costs and benefits.
Scholars normally focus on the benefits or harms that collaboration has on
those directly involved in the collaborative effort (cf. Kerr and Tindale, 2004).
But collaborations also create what economists call “externalities” for those
outside of the collaboration. By collaborating with me, you work less with
others. If I collaborate with you, you come to learn (at least in part) how I
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view the world. You might then share this – for better or worse – with future
collaborators.

Dealing with externalities can be a tricky matter. Externalities create
difficult social dilemmas, like the Prisoner’s dilemma and tragedy of the
commons, where the best thing for the group is inconsistent with individuals’
self interest. Even in situations where optimality is consistent with individual
choice, externalities can make achieving this good outcome complicated or
nearly impossible.

In this paper, I utilize a rudimentary model to determine what types
of collaborative exchanges would be optimal and under what conditions we
should expect groups of scientists to endogenously form optimal collaborative
groups. While this model does not represent every collaborative exchange,
but it does represent some important aspects of collaboration. By analyzing
this model, I find a few lessons for those who wish to maximize the ben-
efits of collaboration. First, by reducing the cost borne by scientists from
collaborating, one benefits the members of the group, albeit in a partic-
ular way. Second, enlarging the group of potential collaborative partners
benefits all those involved in a collaborative group. Finally, and perhaps
most counter-intuitively, groups do better when scientists have high inertia
in choosing collaborative partners – i.e. groups do better when individual
scientists don’t try out new collaborative interactions too often.

The model presented in this paper fits within a larger literature of epis-
temic network models (for an overview, see Zollman, 2013). Collaboration is
modeled as creating a social network. This model, like others in this litera-
ture, are highly idealized. As a result, the results are suggestive rather than
definitive.

1 Modeling collaboration

While collaboration has many facets, the model I present focuses on collab-
orations with a one-way exchange of assistance. You come to collaborate
with me and I help you to solve one of your problems, but you don’t help me
to solve any of mine. One can model other forms of collaboration as well.
For instance, both Jackson and Wolinsky (1996) and Bala and Goyal (2000)
develop models of collaborations that feature two-way collaboration.

The interaction I model is minimally collaboration. The exchange of
information and assistance goes only one-way. As a result, this model lies
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at the border of what we might call “collaboration” and “consultation.” By
focusing on one-way collaboration, I do not mean to imply other forms of
collaboration are non-existent or uninteresting. But already in this limited
situation several interesting complexities arise.

In this paper I will combine, re-interpret, and extend two different mod-
els developed by Bala and Goyal (2000) and Hong and Page (2004). We
begin with a fixed group of n actors. These actors represent any single indi-
vidual or cooperatively acting group that is attempting to solve a problem.
Actors might be an individual scientist interacting with other individual sci-
entists. Or actors might be a scientific lab interacting with other scientific
labs. The model need not be restricted to science, many other groups will fit
the assumptions. Henceforth, I will refer to the individuals as “scientists,”
although the reader should remember that the interpretation of the model
can be broad.

Each scientist faces a different problem with many solutions. This might
be a high-level problem, like developing a novel theory or designing a complex
experiment. The problem might be more simple and mundane, like attempt-
ing to prove a small theorem or fix a broken piece of machinery. Whatever
its level of significance, the problem must have many solutions that range in
quality from worthless to exceptional.

Although the problems faced by the scientists differ from one another, we
will suppose they occupy the same field – each scientist can provide assistance
on every other problem. Although they work in the same area, each scientist
approaches problems in her own way. Each has a unique organization of
the space of solutions. The scientists begin with a potential solution to
the problem and then move to other solutions that occur to them if those
solutions appear better.

Suppose, for instance, an ecologist – call him Carlos – confronts an odd
behavior in the field. Carlos finds in the organism he studies, males exhibit
bright colors. He wants to figure out which of the many potential explana-
tions for this behavior is the correct one (cf. Maynard Smith and Harper,
2003). Potential experiments abound, and Carlos must try to figure out the
one that would be best for uncovering this phenomena.

Carlos begins by considering experimental design u. He forms a judgment
– I’ll suppose a correct one – about how effective design u is likely to be at
discovering the underlying mechanism of interest. While considering design
u, Carlos can also imagine designs w and x as possible. Another ecologist,
call her Julie, might have a different conceptual organization of the space of
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possible experiments. When Julie begins by considering u she conceives of
designs y and z as possible. Carlos, if left to work on the problem by himself,
would overlook y and z, while Julie would miss w and x.

Collaboration in this model is represented by scientists teaching one an-
other their conceptual schemes. So, if Carlos goes to Julie for help, she can
provide at least some information about how she conceives of the problem
that might bring designs y and/or z to Carlos’ attention.

In this model, gaining access to every additional conceptual scheme is as
good as the last – there is no decreasing marginal returns. To put it another
way: learning two conceptual schemes is twice as good as learning one, and
learning three is three times as good as one, etc.1 Finally, each person’s
conceptual scheme is as good as any other’s – everyone is equally smart.
This allows me to represent the benefit of collaboration with a variable, b.
Gaining access to one collaborative scheme improves one’s ability to solve
the problem by degree b, two schemes are worth 2b, etc. For simplicity I
will normalize the expected quality of one’s solution without collaboration
to zero and normalize the benefit for each additional collaboration b to 1.

But, as we all know, collaboration comes at a cost. Learning another’s
conceptual scheme takes time; time that might be better spent working in
isolation. Worse yet, the new conceptual scheme might be misleading causing
one to waste time on inferior solutions. Whatever the source, I will repre-
sent this cost by c. We henceforth assume that there is always a cost, by
stipulating that c > 0.

Each scientist chooses a group of collaborators. Collaborators can, with
high fidelity, communicate the relevant parts of all the conceptual schemes
they know – both their own and schemes gleaned from others. So, if Carlos
collaborates with Julie and Julie collaborates with Shannon, Carlos gains
access to both the relevant parts of Julie’s conceptual scheme and also to the
relevant parts of Shannon’s. As mentioned before, all exchanges are one-way.
So, if Carlos contacts Julie he gains Julie’s conceptual scheme (at a cost to
Carlos but at no cost to Julie2) but Julie does not gain access to Carlos’.

1If there are only finitely many solutions and each individual scientist is good at finding
the best possible solution on her own, this assumption cannot hold. At some point there
must be decreasing marginal returns. If however, each scientist is ineffective at finding the
best solution on her own this assumption is perfectly reasonable. Given the difficulty of
most scientific problems, the equal gains assumption is not far off.

2One might balk at this assumption, since communicating one’s conceptual scheme
to another might take time. Since Julie does not gain from her interaction with Carlos,
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Figure 1: Two graphs: the empty graph (a) and the directed cycle (b).

The model proceeds in two distinct steps. First, everyone chooses which
scientists they will contact. Second, schemes are exchanged. This removes
complex order effects where it matters whether I contact you before or after
you contact another scientist. While this reduces the realism of the model,
it greatly increases its tractability.

With these assumptions one can now use pictures to represent the out-
come of the choices of each scientist. Scientist i forming a connection to
scientist j is represented by an arrow from j to i (representing the direction
of the flow of conceptual schemes). A scientist can then be assigned a “pay-
off” from his choice: the total number of upstream scientists minus the total
cost of the connections he forms.

This representation makes clear why models of this form are called “net-
work formation” models. Each scientist chooses whom to link to in a net-
work, and she receives a payoff determined by the entire network’s structure.
These models are used to represent a multitude of relationships including
co-authorship and friendship (Jackson, 2008; Goyal, 2007). But here I will
focus on the epistemic interpretation (Zollman, 2013).

Julie would have no reason collaborate with Carlos if it costs her. One might assume,
for instance, that part of the cost imposed on Carlos (captured by the variable c) is the
amount of remuneration he must give Julie for her time.
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There are three distinct metrics for the effectiveness of a collaborative
network. The first is called social optimality. A pattern of collaboration
is socially optimal if it maximizes the sum of the individual payoffs. This
represents the situation where all problems are solved to the greatest degree
possible given the conceptual schemes available in the community. In this
model, only two different states could be socially optimal. When c ≤ n− 1,
collaboration is worthwhile so long as doing so will give one access to a rich
set of conceptual schemes. In this context the directed cycle is optimal (see
figure 1(b)). If c > n− 1 then collaboration is not worthwhile and the only
optimal state is one where no one collaborates with anyone (Bala and Goyal,
2000).

This result has important implications. Consider for instance the ap-
parently best case scenario for collaboration, 1 > c. Here collaboration is
valuable even if I only gain access to one additional conceptual scheme. In
a large group, one might be inclined to infer that everyone ought to collab-
orate with everyone. After all any pair of scientists, if they were considered
in isolation, ought to collaborate. But, when conceptual schemes are trans-
mitted second hand, this is not true; the optimal structure of collaborative
exchanges is sparse. The system would not be improved by encouraging
further collaboration.

The reason for this, somewhat counter-intuitive conclusion comes from
the presence of externalities mentioned at the outset. If Julie has contacted
Shannon and learned her conceptual scheme, then Julie is more valuable as
a collaborator for Carlos. If Julie can transmit Shannon’s scheme with high
fidelity, then Carlos does best by working with Julie and gaining access to two
additional conceptual schemes. Carlos has little to gain by also interacting
with Shannon, since Julie has given him all the information that Shannon
might provide. This will hold true even when second hand transmission of
information loses fidelity – up to a point, see Bala and Goyal 2000.

Social optimality in games is a technical concept which imperfectly ap-
proximates our intuitive notion of “good for the group.” First, if one is mod-
eling scientists researching a problem that has implications for those outside
of science, one also might want to consider the impact of the research on so-
ciety at large. Under the intended interpretation of the model provided here,
the payoff to scientists is just the degree to which they solve the problem.
If each scientific problem is valuable (and equally valuable) to the world-at-
large, then what is socially optimal for the community of scientists reflects
the good of the community at large.
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Figure 2: Two non-stable graphs.

One might worry about social optimality because one objects to maximiz-
ing the sum or average payoff. This focus is reasonable for groups of scientists
since we are primarily interested – as a society – in the total progress of sci-
ence. In many political settings, in contrast, some advocate for giving special
consideration to the worst off. Egalitarian considerations reach the same con-
clusion in this model since the worst off does best in the state I call “socially
optimal.” Other measures are possible, too, and some of them will not so
neatly coincide with my choice for a measure group effectiveness. However,
given the intended interpretation of the model, they cannot be given much
defense.

The second metric of evaluation for a pattern of collaboration is stability.
A pattern of collaboration is stable, if no individual scientist is able improve
his situation by changing his collaborative partners. For instance, the pattern
pictured in figure 2(a) is not stable, because the individual in the upper right
can do better by connecting to the individual in the bottom right. By doing
so, she would increase her payoff from 2 − c to 4 − c.

In this model, socially optimal states are always stable (Bala and Goyal,
2000). When c < 1 scientists are willing to collaborate with one other sci-
entist even if the potential collaborator can only provide her with one new
conceptual scheme. In these cases, only the directed cycle is stable – in any
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other situation at least one scientist has a positive incentive to change her
pattern of collaboration.3 When n − 1 > c > 1, the directed cycle remains
stable but the state where no one interacts is also stable (see figure 1(a)).
Here collaboration cannot get “off the ground” because no one is willing to
take the first step. The first person to collaborate must pay the cost to gain
access to one conceptual scheme, and since c is greater than the value of a
single scheme, no one wants to pay the cost. We have an example of a sub-
optimal, but stable, outcome – a situation familiar to many of us. Turning
to the last case, when c > n − 1, we find the only stable state is the one
where no scientist collaborates with any other which is also optimal.

The last metric of evaluation, which will be our primary focus, is one of
“learnability.” When n − 1 > c > 1, there is more than one stable state.
Even if scientists always find a stable states, one cannot be assured that they
will come to land on the socially optimal one. Scientists might not come
to find a stable state, but wander around moving from one unstable state
to another, perhaps indefinitely. To uncover which states are learnable, one
must model of learning.

2 Modeling learning

In order to model learning, I now must extend the model of one-shot collabo-
ration to repeated collaboration. Now scientists are confronted with problems
sequentially. Each time a scientist is confronted by a new problem, she can
connect to others and collaborate on that problem according to the model
above. Each new problem differs from the previous one, and each instance of
collaboration only provides enough information about a conceptual scheme
to solve the problem under consideration. This assumption seems plausible
as collaboration is usually problem-focused. The resulting model is tractable
because the benefits from each instance of collaboration is independent of
the previous collaborations.

Many models of learning in game theory require scientists to form a belief
about what others are doing. In games of this type, this requirement amounts
to having a probability distribution over all directed graphs with n nodes –
a large space even for moderately sized n. Not only would this be difficult to
analyze, it is unlikely to provide any real insight into how scientists behave.

3When c = 1 things are slightly more complex. A scientist has neither a positive nor a
negative incentive to change away from some other patterns of interaction.
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Instead Huttegger et al. (2014) suggest this game is best analyzed using a
learning rule called “probe and adjust” which represents unadorned learning.
Each scientist has a default strategy which she usually employs. Occasionally,
a scientist experiments – she tries a new strategy at random (a probe). If
the new strategy outperforms the default, she adopts it as her new default.
On the other hand if the new strategy is inferior to the old one, she returns
to the previous default. If the two are tied, she chooses which one will be
the new default at random.4

This method of strategy revision has a few interesting properties. If one
enforced the rule that there must be one round of default play in between
single probe events, then the process would be guaranteed to evolve into a
stable state and then the default behavior would never change. While math-
ematically helpful, limiting the system in this way seems implausible – how
would scientists ensure they weren’t probing simultaneously or immediately
after another? If one relaxes this assumption the group can escape from
stable states, even optimal ones.

As an example, consider the directed cycle (figure 1(b), the optimal state),
where c = 3. Suppose the individual in the upper right probes by connecting
to the individual in the upper left (figure 2(a)). Not only does this lower her
own payoff but her probe lowers the payoff of everyone else except for the
person on the lower right. Of particular importance for this example is the
individual on the top, whose payoff is now 2 − c = −1. After one round of
probing the individual on the top left will switch back to her default strategy.
If the individual on the top probes on the subsequent round by abandoning
collaboration altogether, his situation has improved over the previous round
– his payoff was −1 (because the other individual was probing) and now it
is 0. So, he will stick with this strategy (figure 2(b)). Now the individual on
the upper left will prefer to drop his connection, and so on. The system has
now abandoned an optimal state.

4Whether or not probe and adjust represents exactly how scientists are learning is not
important. The tractability of probe and adjust makes this model an important starting
point from which more general lessons can be drawn. The phenomena illustrated in the
next section strike me as sufficiently general as to reoccur in almost any learning rule
where scientists are unaware of the other connections in the network – i.e. where scientists
do not know the other’s patterns of collaboration.
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3 Results

The overarching question is, to what extent can scientists come to collaborate
efficiently? This is a multifaceted question that is addressed in parts.

First, to what degree is experimentation with collaboration patterns help-
ful? Is the group improved if people are constantly exploring – perpetually
probing – or should they be more set in their ways? The answer to this
question is not obvious. On the one hand, high probing rates will help the
system escape sub-optimal ones relatively quickly. But, high rates will also
increase the probably that the system will leave an optimal state in favor of
a sub-optimal one.

A second research question concerns how the cost of collaboration, c,
affects the system. If every group always attained optimality, then everyone
improves c becomes smaller. But, if we cannot be assured of optimality,
the answer is not so straight-forward. While a lower c will make the final
payoff in the higher for everyone, it also provides a smaller incentive to find
the optimal state. A lower c might cause the community to wander around
more. Furthermore, lowering c might also affect the ease with which the
system escapes the optimal state.

The last research question relates to group size. Smaller groups are likely
to reach optimality more quickly. As Huttegger et al. (2014) point out, the
number of non-optimal states grows quickly as new scientists are added, but
the set of optimal states grows much more slowly. So, the proportion of states
that are optimal approaches zero as the number of scientists approaches
infinity. On the other hand, the payoff for scientists even in non-optimal
states goes up as the set of potential collaborators increases (assuming we
hold c constant). How do these two considerations trade off against one
another?

3.1 Experimentation rates

Huttegger et al. (2014) prove that when c < 1 (i.e. when the only stable
state is also the only optimal one), the system will spend most of its time in
the optimal state – the directed cycle – in the limit. Stated more formally, if
you choose a probability p other than 1, there is a probe probability where
the long-run probability the system is in the optimal state is at least as high
as p. This proof is achieved by showing that from any state there is a chain
of intermediate states where (a) at each stage only one player must change
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to go from one state to the next, (b) the person who changes does not make
herself worse off, and (c) the end of the chain is the directed cycle.

This result is limited. First, we cannot generalize to cases where c > 1
– the theorem is clearly no longer true. Second, the result does not system-
atically answer the question about experimentation rates. Finally, we only
know what happens in the infinite limit which can be very different from
short-run results.

In order to provide a more general analysis, a simulation study was con-
ducted. Simulations considered groups of size 4, 5, 6, 7, 8, 9, and 10 with
probe probabilities ranging from 0.01 to 0.21 in 0.03 increments. c varied
from 0.1 to n + 0.1 in 0.5 increments.5 For each setting of the parameters
1,000 simulations were generated where the probe and adjust process contin-
ued for 100,000 rounds.6

Figure 3 illustrates the conclusions regarding probe probabilities. The
top plot shows how well scientists fared when measured by the time they
spent in the optimal state.7 Non-optimal states can nonetheless be better or
worse. The bottom plot shows how well the groups fared when measured by
normalized payoff (0 is the worst possible payoff for that configuration and 1
is the best possible payoff). Both plots reveal the same general trend: lower
probe probabilities are better. (This generalizes simulation results presented
in Huttegger et al. 2014 for a small cost version of this game.)

Obviously a probe probability of zero would be inferior because the group
would never change. However, low probe probabilities do much better than
higher ones. Of those tested, a probe probability of 1% was superior. In com-
munities appropriately modeled in this way, one should be cautious about en-
couraging scientists to experiment with new patterns of collaboration. These
simulations suggest that encouraging exploration will hinder the ability of

5The results for these group sizes and probe probabilities show clear patterns that can
be projected to larger group sizes and probe probabilities (but not without some care to
smaller probe probabilities).

6100,000 rounds were chosen in order to model a long, but finite time. This will
provide a helpful contrast to the limiting results of Huttegger et al. (2014). The results
between the limit analysis and this, very long, time differ in significant respects. Since
real scientists are operating at much shorter time spans, there might be further differences.
The fundamental differences between finite and infinite limit analysis can be identified at
this long time scale. This satisfies the duel goals of understanding the system while not
risking a time-scale that is “too short.”

7In general there is also a strong relationship between time spent in optimal state and
the first time optimality is obtained.
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Figure 3: Two plots which relate the probability of a scientist probing to the
proportion of time spent in the optimal state (top plot) and to the average
normalize payoff (bottom plot). In both plots the gray circles represent the
average of 1,000 simulations for each of the parameter settings. The black
squares represent the average of all simulations for all parameter settings
which use the same probe probability.
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the system to find and remain in the optimal state. Beyond that, increased
experimentation will harm the communities ability to do well even when not
in an optimal state.

3.2 Cost

What effect will the cost of collaboration have on the overall performance of
the system? It seems intuitive to strive to minimize the cost of collaboration,
but will the simulations endorse this policy? To answer this question I will
focus on a representative group size, 7 individuals, all of whom have a low
probe probability of 0.01. All the qualitative facts reported here are true of
the other group sizes studied.

First let us consider how cost relates to the ability of scientists to find
optimality. This is pictured in the top plot of figure 4. Recall the three
different regimes. When c < 1, the optimal state is the only stable one.
Here, however, the system is rarely in the stable state. This is consistent
with results reported in (Huttegger et al., 2014). They conjecture that it is
difficult to find the optimal state because the search space is so large. Indeed
this is likely part of the problem. But the size of the search space cannot be
the whole story, because when the cost is higher in this region (c = 0.6) the
group performs slightly better than when it is lower (c = 0.1). Furthermore,
comparing the low cost regime to cases where c > 1 suggest the situation is
rather more complicated.

Turning to the second regime, where 6 > c > 1, we find a complicated
relationship between cost and time in the optimal state. There is an optimal
cost between 2 and 3 where the system is best (in this regime) at finding,
and remaining in, the optimal state. While the changes in cost do not effect
what state is optimal, they do affect the ordering of non-optimal states,
and in so doing make the optimal state easier to find. Considering only
those simulations that occupied the optimal state for at least one round, the
system with a cost of 2.1 was over three times faster at finding the optimal
state than the system with a cost of 0.1.

One should be careful about jumping to the conclusion that one should
attempt to increase the cost of collaboration. While the identity of the
optimal state is not changed as the cost increases, the objective quality of
this state changes. When the cost is 0.1, each individual in a seven person
group receives a payoff of 5.9 in the optimal state, but when the cost is 2.1,
each individual receives a payoff of 3.9. So while the system spends more
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Figure 4: Simulations results for a 7-person group with probe probability
set at 0.01. The plots represent the average payoff and standard deviation
for different values of cost versus time in the optimal state (top plot) and
normalized payoff (bottom plot, circles plotted against the left y-axis) and
nominal payoff (bottom plot, triangles plotted against the right y-axis).
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time in the optimal state, this is not equivalent to improving how individuals
fare.

And in fact, they are not faring better with higher costs. The bottom
plot of figure 4 shows both the normalized payoff and the nominal payoff.
The later is most important. While increasing the cost increases the time
spent in the optimal state, doing so also makes that state worse. The later
consideration outweighs the former. While the low cost communities wander
around for a significant amount of their time, they nonetheless do well.

Finally, in third regime, where c > n−1, scientists are adept at achieving
optimality. This is not surprising because in this situation connecting to no
one dominates connecting to anyone. Because connecting to no one is one
strategy out of 64, individuals must find the dominant strategy which is why
they are not in the optimal state the entire time.

These results can underwrite the intuition that collaboration is improved
by making collaboration less costly (by perhaps improving mechanisms of
communication, or by providing direct incentives designed to compensate for
other costs). But, reducing the cost does not increase the chance that the
community arranges itself in optimal ways – to the contrary.

3.3 Community size

As community size increases, it will become more difficult for the group
to find the optimal state (Huttegger et al., 2014). But, as in the previous
section, increasing the population of scientists also improves the nominal
payoff of that best case. It therefore is an open question whether increasing
the size of the community will be beneficial or harmful to that community.

Figure 5 illustrates the settings of the parameters which maximize the
time in optimal state for each group size. While, as expected, the time spent
in the optimal state decreases rapidly as the group size grows, the benefit
from the larger size swamps the loss. The nominal payoff increases despite a
greater fraction of the time is spent in non-optimal states.

There is a harm to increasing the group size; they will spend more time
exploring non-optimal states. In this model, that harm is worth incurring
because the benefit of increased collaborative possibilities is sufficiently large
to outweigh the cost (at least in the best case).
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Figure 5: Simulation results comparing the number of players to the time in
the optimal state (triangles plotted against left y-axis) and to the nominal
payoff (circles plotted against the right y-axis). Each point represents the
single probe probability and cost that maximized the nominal payoff relative
to other values of those parameters for groups of the same size.
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4 Conclusion

Not all collaborative interactions are analogous to this model. I have argued
that there are unlikely to be any fully general results about the structure
of epistemic networks (Zollman, 2013), and I expect this will be true with
collaboration as well. However, I do believe that this model provides an
appropriate idealization of some situations of collaboration, and where it
does, it offers some clear guidance to how best achieve effective collaboration.

The model underwrites the general belief that productive collaboration
is facilitated by (a) increasing the number of individuals with whom collab-
oration is possible and (b) decreasing the cost to scientists for engaging in
collaborative exchanges. These are true despite a reduction in the time spent
in optimal states.

More surprisingly, however, the model suggests that encouraging scien-
tists to experiment more with different collaborative arrangements will not
be productive. With the increased interest in interdisciplinarity, funding
agencies and administrators have been encouraging scientists to find new
patterns of collaboration. However, in this model, spuring new collaboration
by introducing new scientists to one another or by encouraging scientists to
try something new, is counterproductive.
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