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Abstract5

We study the handicap principle in terms of the Sir Philip Sidney game. The6

handicap principle asserts that cost is required to allow for honest signalling in the7

face of conflicts of interest. We show that the significance of the handicap principle can8

be challenged from two new directions. Firstly, both the costly signalling equilibrium9

and certain states of no communication are stable under the replicator dynamics (i.e.,10

standard evolutionary dynamics); however, the latter states are more likely in cases11

where honest signalling should apply. Secondly, we prove the existence and stability12

of polymorphisms where players mix between being honest and being deceptive and13

where signalling costs can be very low. Neither the polymorphisms nor the states of14

no communication are evolutionarily stable, but they turn out to be more important15

for standard evolutionary dynamics than the costly signalling equilibrium.16

Keywords: Costly signalling; evolutionary dynamics; handicap principle; Sir Philip17

Sidney game18
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1 Introduction19

The Sir Philip Sidney game (Maynard Smith, 1991) has been a locus of attention for the20

analysis of costly signalling between relatives. It represents perhaps the simplest game that21

captures the central notion of handicaps (due to Zahavi, 1975); i.e., that cost is required22

to maintain honest signalling in the presence of partial conflict of interest. The canonical23

example for the Sir Philip Sidney game is the interaction between feeding chicks and their24

parents. Maynard Smith introduced the discrete Sir Philip Sidney game as a simplified25

version of Grafen’s 1990 notable costly signalling model (see also Johnstone and Grafen, 1992,26

1993; Bergstrom and Lachmann, 1997, 1998; Lachmann and Bergstrom, 1998; Godfray and27

Johnstone, 2000; Brilot and Johnstone, 2003; Hamblin and Hurd, 2009). Many variations of28

the initial game have been considered, and there is an ongoing debate about how widespread29

this phenomenon is (Maynard Smith and Harper, 2003; Searcy and Nowicki, 2005). However,30

much of this debate retains the central methodology of calculating Evolutionarily Stable31

States (ESS) (Maynard Smith and Price, 1973; Maynard Smith, 1982).32

In this paper we conduct a dynamic analysis of the original Sir Philip Sidney game,33

which identifies gaps in our understanding of honest signalling caused by the strong focus34

on ESS. We concentrate on two issues. Firstly, we contrast the evolutionary significance of35

states of perfect communication (the signalling ESS) and states of no communication (pooling36

equilibria). In most of the cases relevant for costly signalling, the pooling equilibrium appears37

to be the most probable evolutionary outcome in terms of having the larger basin of attraction38

under standard evolutionary dynamics (Section 4). Secondly, while the existence of the39

signalling ESS and of pooling equilibria is a well established result in the literature, we40

prove that, in addition, a family of polymorphic equilibria exists which allow for partial41

communication (Section 2). These polymorphisms can establish partly honest signalling42

even in the face of low signalling costs. We prove dynamic stability of the polymorphic43

equilibria (Section 3), and show that this outcome is in many cases more likely than the44

signalling ESS (Section 4). These results have some important biological implications. We45
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suggest in particular that one should not place to much weight on perfect communication46

in situations involving conflicting interests; instead, one may look for alternative equilibria47

such as the polymorphisms described below. We shall discuss this issue more thoroughly in48

the concluding section of this paper.49

2 The Sir Philip Sidney game50

The Sir Philip Sidney game proceeds in two stages. A sender can be either healthy (with51

probability 1 − m) or needy (with probability m). In both states, the sender can send a52

signal bearing a cost c > 0, or decline sending a signal at all. In the second stage, after53

having (or not having) received the signal, a donor may respond by transferring a resource54

d > 0 to the sender and thus reducing her survival probability to 1− d, or may abstain from55

doing so. The donor does not know the sender’s true state. The extensive form of this game56

is depicted in Figure 1. Without receiving the resource, a sender’s probability of surviving57

is 1 − a if she is needy and 1 − b if she is healthy; we assume that a > b throughout this58

paper (i.e. a needy individual profits more from receiving the resource).59

The extensive form game of Figure 1 does not allow for communication since the donor’s60

strategy of never transferring the resource is strictly dominant. Introducing a relatedness61

parameter k ∈ [0, 1] permits a higher degree of common interest between the sender and62

the donor. At each outcome, a player receives her own payoff plus k times the payoff of the63

other player. This gives rise to a four-by-four strategic-form game. A player’s strategies are64

given by a rule of behavior which tells her what to do at each of her information sets. These65

strategies are enumerated in Figure 2.66

Investigators often reduce the four-by-four strategic form structure by ignoring the strat-67

egy ‘signal only if healthy’ and the corresponding donor strategy (like Bergstrom and Lach-68

mann, 1997; Maynard Smith and Harper, 2003). In this truncated game, two kinds of69

equilibria are usually considered. The first one is the most important Nash equilibrium in70
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Figure 1: An extensive form representation of the Sir Philip Sidney game. The dotted lines
represent the donor’s information sets, i.e. the donor is unable to distinguish between the
decision nodes connected by the dotted lines. The terminal nodes show the sender’s and the
donor’s payoffs, respectively.

Sender strategies
S1: Signal only if healthy
S2: Signal only if needy
S3: Never Signal
S4: Always Signal

Donor strategies
R1: Donate only if no signal
R2: Donate only if signal
R3: Never donate
R4: Always donate

Figure 2: Sender and donor strategies in the Sir Philip Sidney Game.

the literature on handicap signals. It is given by the strategy pair ‘signal only if needy’ and71

‘donate only if signal,’ and it is a Nash equilibrium if72

a ≥ c+ kd ≥ b (1a)

a ≥ d

k
≥ b (1b)

(see Bergstrom and Lachmann, 1997). At this equilibrium, cost can be said to maintain73

signal reliability since a needy sender is willing to pay the cost c in order to get the resource,74

while a healthy sender does not pretend to be needy by sending the signal. If the inequalities75
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are strict, then the equilibrium is a strict Nash equilibrium and, therefore, also an ESS in76

the symmetrised game (cf. Cressman, 2003). This equilibrium is usually called a signalling77

ESS or a separating equilibrium.78

There always exists a pooling equilibrium where no information is transferred. Bergstrom79

and Lachmann (1997) show that the profile ‘never donate’ and ‘never signal’ is a Nash80

equilibrium if81

d > k(ma+ (1−m)b); (2)

if this inequality is reversed, then the profile ‘always donate’ and ‘never signal’ is a Nash82

equilibrium. Since the signal is not sent at both equilibria, these profiles can be called pooling83

equilibria.84

In Appendix B, we prove that ‘signal only if healthy’ and ‘donate only if no signal’ is a85

Nash equilibrium if (1b) holds together with86

a ≥ kd− c ≥ b. (3)

This equilibrium is often ignored by other investigators on grounds of requiring too much87

common interest between sender and donor to be relevant for costly signalling theory (May-88

nard Smith, 1991; Bergstrom and Lachmann, 1997). We think that this exclusion is a89

mistake. Firstly, the existence conditions of this equilibrium play a role in interpreting dy-90

namical properties of the Sir Philip Sidney game as parameters are varied (see Sections 391

and 4). Moreover, R1 is important for the equilibrium structure of one of the pooling equi-92

libria. Once we allow all sender and donor strategies, a pooling equilibrium will never be93

a strict Nash equilibrium. Given that the sender chooses ‘never signal’, R2 and R3 as well94

as R1 and R4 are behaviorally equivalent. In Appendix A, we show that pooling equilibria95

are elements of larger sets of Nash equilibria. In the case of (S3, R3), the donor can play a96
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mixture (1− λ)R2 + λR3. As long as97

λ ≥ 1− c

a− kd
(4)

the strategy profile (S3, (1 − λ)R2 + λR3) is a Nash equilibrium if (2) holds; otherwise,98

(S3, (1− µ)R1 + µR4) is a Nash equilibrium as long as99

µ ≥ 1− c

kd− b
. (5)

Since pooling equilibria are elements of a line of equilibria, they cannot be evolutionarily100

stable. One can show, however, that they correspond to neutrally stable strategies (May-101

nard Smith, 1982). We will come back to this point shortly in the broader context of dynamic102

stability (Section 3).103

To the best of our knowledge, another kind of equilibrium has been completely overlooked104

in the biological literature. In the corresponding economics literature (Spence, 1973), similar105

equilibria—called hybrid equilibria—are known to exist but were considered unimportant.106

Recently, Wagner (2009) has shown that, contrary to received wisdom, a hybrid equilibrium107

can be very significant in Spence’s game from the point of view of game dynamics. In the108

Sir Philip Sidney game there exists a family of polymorphisms which corresponds to hybrid109

equilibria. Each polymorphism is a mixed Nash equilibrium where the sender mixes between110

‘signal only when healthy’ and ‘always signal’, while the donor mixes between ‘donate if111

signal’ and ‘never donate.’ The family of polymorphic equilibria is given by λS2 + (1− λ)S4112

and µR2 + (1− µ)R3, where113

λ =
k(ma+ (1−m)b)− d

(1−m)(kb− d)
and µ =

c

b− kd
. (6)
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Since λ, µ must be well defined, the polymorphism (6) exists if114

a >
d

k
> b and b− kd > c (7)

and if (2) is met. (The proof can be found in Appendix B.) The conditions (7) show that,115

under generic conditions, the mixed Nash equilibrium (6) exists if and only if the signalling116

ESS (1) does not exist. The value c∗ = b − kd is the minimum cost of a believable signal117

(Bergstrom and Lachmann, 1997). Condition (7) implies that at the polymorphism the cost118

of the signal will be lower than c∗. However, the polymorphic equilibrium sustains some119

level of meaningful communication. Thus, information transfer is possible in a wider range120

of cases than was previously believed. (Notice that partly honest communication here does121

not arise because of the introduction of different sender types as in Johnstone and Grafen122

(1993).)123

3 Dynamic stability of equilibria124

The multiplicity of equilibria in the Sir Philip Sidney game makes a priori conclusions about125

its evolutionary outcomes difficult. In order to assess the evolutionary significance of the126

different equilibria, we shall investigate their dynamic stability properties in terms of the127

two-population replicator dynamics (Hofbauer and Sigmund, 1998). If xi is the relative128

frequency of sender type i and yj is the relative frequency of donor type j, i, j = 1, . . . , 4,129

then this dynamics is given by:130

ẋi = xi(πi(y)− π(x,y)) (8a)

ẏj = yj(πj(x)− π(y,x)) (8b)
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Here, x = (x1, . . . , x4),y = (y1, . . . , y4), πi(y) is the payoff of i against y and π(x,y) is the131

average payoff in the sender population; πj(x) is the payoff of j against x and π(y,x) is the132

average payoff in the donor population. Many of our results also apply to the one-population133

replicator dynamics if we consider the symmetrised Sir Philip Sidney game (for details, see134

Cressman, 2003).135

Under the relevant conditions ((1), and (1b) and (3) with strict inequalities, respectively)136

(S2, R2) and (S1, R1) are strict Nash equilibria and therefore asymptotically stable population137

states for (8). In Appendix A, we show that if the inequalities in (4) and (5) are strict, then138

the equilibria in the components (4) or (5) are quasi-strict. (An equilibrium is quasi-strict if139

there is no best repsonse to any of its components outside of its support.) In the symmetrised140

version of the game, these profiles are neutrally stable. Quasi-strictness, in turn, implies the141

following result (for details on why quasi-strictness implies dynamics stability in this case cf.142

Cressman, 2003).143

Theorem 1. The pooling equilibria given by (4) and (5) attract an open set of nearby144

population states under the appropriate conditions.145

Theorem 1 tells us that pooling equilibria are meaningful for the replicator dynamics since146

a non-negligible portion of initial populations will end up in the set of pooling equilibria.147

The dynamic stability properties of the polymorphic equilibrium (6) are particularly148

interesting. In Appendix B, we prove two results: (i) All transversal eigenvalues of the149

Jacobian matrix J of (8) evaluated at (6) are negative; and (ii), the two remaining eigenvalues150

of J are purely imaginary. Both results hold if we assume that conditions (2) and (7)151

are met. (i) and (ii) imply that the polymorphism (6) is a spiraling centre; i.e., initial152

population states close to the polymorphism in the interior of the state space converge153

towards K = span(S2, S4) × span(R2, R3) and, once they get close enough, spiral around154

the polymorphism forever. The following theorem summarises the stability properties of the155

polymorphic equilibrium.156
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Figure 3: A phase portrait of one boundary face of the space of population states (face K) of
the Sir Philip Sidney game illustrating the motion around the polymorphic equilibrium. The
strategies are given in Figure 2. Close to the unique rest point, interior trajectories (of the
full state space) converge to K. Notice the resemblance between this phase portrait and the
phase portrait of the well known game of Matching Pennies under the replicator dynamics.

Theorem 2. If (2) and (7) hold, then the polymorphic equilibrium (6) is Liapunov stable157

under the replicator dynamics (8).158

Since all transversal eigenvalues are negative, the interesting dynamical behavior is con-159

fined to K. The phase portrait of this face for one set of parameter values is depicted in Fig-160

ure 3. We should note that this dynamical behavior is structurally unstable (Guckenheimer161

and Holmes, 1983); perturbations of the dynamics (8) will either result in an asymptotically162

stable or an unstable polymorphism. The issue of structural instability is a subtle one and163

needs more space; see Hofbauer and Huttegger (2008) for a case study. Suffice it to say here164

that many perturbations will result in an asymptotically stable polymorphism.165
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4 Basins of Attraction166

The results of the previous section suggest that one cannot immediately use the ESS analysis167

of the Sir Philip Sidney game to conclude that signalling is likely to evolve. Although for168

many parameter configurations the separating equilibrium (S2, R2) is an ESS, there are sev-169

eral other outcomes which have a non-negligible basin of attraction. Both pooling equilibria170

and also the other separating equilibrium can be outcomes of evolution. If we are interested171

in determining the likelihood that signalling will evolve, we have to estimate the relative sizes172

of the basins of attraction for the various outcomes. In this section, we will use numerical173

simulations to resolve this issue.174

Investigators generally regard the region where k is high to be uninteresting because175

signalling is stable for all values of c, including c = 0. We nevertheless start with the176

limiting case k = 1 as an important benchmark case. Figure 4 shows the size of the basins177

of attraction for both separating equilibria. The initial population states not converging to178

them are of non-negligible size. In fact, cost appears to hinder the evolution of successful179

signalling. Understanding this result is not difficult. Suppose that we have a population180

of donors who adopt either the strategy ‘donate only if signal’ or ‘never donate’. Let the181

proportion of the former be represented by α. The sender prefers the strategy ‘signal only if182

needy’ to the strategy ‘never signal’ only when (15/32)α > c. So, as c grows there must be183

a proportionally larger percentage of the donor population who will respond to a signal in184

order for signalling to be beneficial for the sender.185

While costs generally hurt the evolution of signalling for these parameter values, it does186

not do so in every case. For extreme values ofm, moderate cost appears to assist the evolution187

of signalling. The mechanism by which this result is produced is relatively complicated, but188

looking at a slightly simplified situation is insightful. Consider the initial population state189

illustrated in Figure 5 for m = 0.1 (i.e., the sender is rarely needy). If c = 0, there is no190

selection acting on the sender population at all. However, there is selection in the donor191

population in favor of the strategy ‘never donate’. So without cost, the population converges192
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Figure 4: Simulation results showing the cumulative size of the basins of attraction for the
two signaling equilibria when k = 1 for several differing values of c. The simulation utilizes
the discrete time replicator dynamics when a = 31/32, b = 9/32, and d = 1/2.
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Strategy Proportion Payoff Selective force
S1 Signal if healthy 0.05 1.626− 0.9c −0.254c
S2 Signal if needy 0.01 1.626− 0.1c 0.546c
S3 Never signal 0.34 1.626 0.646c
S4 Signal always 0.6 1.626− c −0.354c
R1 Donate if no signal 0.09 2.22713− 0.646c
R2 Donate if signal 0.09 2.21388− 0.646c
R3 Never donate 0.75 2.3265− 0.646c
R4 Always donate 0.07 2.115− 0.646c

Figure 5: An initial population and its associated payoffs that illustrates how a smaller c
might retard the evolution of signaling for extreme values of m.

to a pooling equilibrium. This occurs because there is little information in the sender’s193

signal. When c > 0, there is selection acting on the sender population, primarily in favor194

of the strategy ‘never signal’. Although the separating strategy ‘signal only if needy’ does195

worse than ‘never signal’, it does better than average and is initially selected for. (This196

is illustrated in the “Selective force” column, which is the payoff of that type minus the197

average payoff in the population.) As it increases in proportion it changes the selective force198

exercised on the donor population sufficiently that ‘donate only if signal’ becomes superior199

and grows. Once a sufficiently large percentage of the donor population is playing ‘donate200

only if signal’, the selective force exercised on the sender population shifts in favor of ‘signal201

only if needy’ over ‘never signal’, and the system evolves to a state with perfect information202

transfer. A similar situation obtains for the case of m being sufficiently high.203

This considers only the case of k = 1. Figure 6 illustrates what happens as k is reduced.204

One will notice from Figure 4 that the basins of attraction for separating equilibria are205

maximised when m = 0.3. This represents the situation where, if the sender provides no206

information (by playing either S3 or S4), the donor is indifferent between donating or not.207

This indifference point changes as k is reduced. For each value of k in Figure 6 we set m208

equal to this point of indifference so as to maximise the basins of attraction for signalling.209

This provides the most benign scenario for the evolution of signalling. In Figure 6 we see210

that so long as cost free signalling is an ESS, it always evolves. However, similar to what211
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Figure 6: Simulation results showing the cumulative size of the basins of attraction for the
two signaling equilibria as k and m vary. m is set so as to maximize the basins of attraction of
signaling given the specified k. As before, the simulation utilizes the discrete time replicator
dynamics when a = 31/32, b = 9/32, and d = 1/2.
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happens if k = 1, the presence of cost hinders the evolution of signalling and the higher212

costs result in smaller basins of attraction. One will notice that, as k is reduced, there are213

sudden drops in the basins of attraction of costly signalling. This occurs as one crosses the214

boundaries in (3), when the equilibrium where the signal is used to indicate health no longer215

exists.216

If 0.51 < k < 0.56, then k is sufficiently low that (S2, R2) is only stable with some signal217

cost. Here one will notice a few interesting features. In the first place, although it is the only218

ESS, the separating equilibrium has a relatively small basin of attraction – it is always less219

than half the state space. This suggests that an analysis, based on the ESS concept, which220

ignores aspects of evolutionary processes can lead to misleading implications. Moreover, we221

see that the lower costs usually produce larger basins of attraction for signalling, similar to222

what happens in the common interest case. For brevity’s sake, we cannot report results for223

other values of k and m; but we have found that, like in the k = 1 case, the relationship224

between cost and the evolution of signalling can be very complex.225

Finally, we turn to the evolutionary significance of the polymorphic equilibrium. Fig-226

ure 7 illustrates the basin of attraction of the face K (described in Section 3). These basins227

of attraction are for parameters where signal cost is required in order to sustain full com-228

munication. For these settings, the minimum believable cost c∗ ≈ 0.011. However, the229

corresponding polymorphic equilibrium has a significant basin of attraction for costs an or-230

der of magnitude smaller. When comparing the results here to Figure 6, one sees that, by231

considering the best cases, the polymorphic equilibrium has a larger basin of attraction (for232

fixed k), than does the signalling ESS with higher signal costs. Because of this result we233

believe that the polymorphic equilibrium may be more relevant than the signalling ESS to234

the study of signalling in existing populations.235
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Figure 7: Simulation results showing the basin of attraction for the hybrid equilibrium for
different values of m and c. Here k = 0.54, a = 31/32, b = 9/32, and d = 1/2.
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5 Discussion236

Our results point out certain limitations of the ESS methodology as to the identification of237

long-run evolutionary outcomes with ESS. By focusing on ESS, traditional investigations of238

the Sir Philip Sidney game suggest that the evolution of costly signalling is far more likely239

than it appears to be for standard evolutionary dynamics. While the signalling equilibrium is240

the only ESS of the game for conflicting interests between the players, our dynamic analysis241

indicates that there are other states, namely pooling equilibria, which attract a significant242

portion of the initial populations. From the point of view of standard evolutionary dynam-243

ics, pooling equilibria also have a larger basin of attraction for many specifications of the244

parameters, indicating that they are the most probable evolutionary outcome in these cases.245

This means that the pooling equilibrium will be observed more often than the signaling246

equilibrium since there are more initial populations converging to the former than to the247

latter. We would like to emphasize that this holds for those parameters where the handicap248

principle should apply because of conflicts of interest between sender and donor.249

The existence and stability of the polymorphic equilibria (6) illustrates another problem250

of the ESS methodology. By exclusively investigating the conditions under which a sig-251

nalling ESS exists, one looses sight of other evolutionarily significant outcomes. This also252

poses problems for empirical studies of signalling, since some theoretically well founded evo-253

lutionary outcomes may not be known; consequently, the corresponding predictions of the254

existence of, e.g., polymorphisms such as (6) are not tested in the field.255

We believe that the existence of partial information transfer even in situations where256

communication was believed to be impossible, as exemplified by the polymorphic equilibrium,257

has broad biological implications. For the relevant parameters, the polymorphic equilibrium258

appears to be a more likely evolutionary outcome than the traditional costly signalling ESS.259

As an example one may consider the paradigmatic signalling interaction between relatives,260

the begging of chicks for food from their parents. Parents would like to know the state of the261

chick while the chick would prefer food regardless of its state. If signalling need is associated262

17



with a sufficiently high cost c, then the Sir Philip Sidney game (and many other signalling263

models) predicts that the state where only needy chicks send the signal and where parents264

react to the signal is a possible evolutionary outcome. Our new results predict that even if265

c is very low, an alternative equilibrium is possible which is weakly stable and allows some266

information transfer between chicks and their parents. More specifically, the population267

dynamics may lead to a state where some, but not all chicks will signal need honestly; and268

some parents will respond to the signal by transferring food. The other chicks will always269

use the signal regardless of their state, and the other parents will never transfer food.270

Our results also suggest that, for the relevant parameters, the polymorphic equilibrium271

is more likely to be observed than the signaling ESS. This resonates one of the issues found272

in many experiments which seek to determine the cost in signalling interactions such as273

solicitation (Searcy and Nowicki, 2005). Metabolic costs often do not seem to be high enough274

to accord with the existence of a signalling ESS (Bachmann and Chapell, 1998). Cost by275

risk of predation has also not been shown to be consistently high (Haskell, 1994). Even if276

costs are not sufficiently high to sustain full communication, one may find communication277

in a polymorphic state. This opens a new avenue for empirical research which might prove278

insightful.279
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A Geometry and dynamic stability of pooling equilib-284

ria285

Suppose that the donor mixes between R2 and R3. Then S2 and S3 earn the same payoff286

against (1− λ)R2 + λR3 if287

(1−m)(1− b) +m(1− a) + k =λ [(1−m)(1− b) +m(1− a− c) + k]

+ (1− λ) [(1−m)(1− b+ k) +m(1− c+ k(1− d)] ,

or if288

λ = λ∗ = 1− c

a− kd

If λ > λ∗, then S3 gets a higher payoff than S2; the reverse relation obtains if the inequality289

is reversed. Concerning S4 we have to know when π(S4, (1−λ)R2 +λR3) ≥ π(S3, (1−λ)R2 +290

λR3). This equation is equivalent to291

(1− λ)(1 + k − c− kd) + λ(1−ma− b+mb− c+ k) ≥ (1−m)(1− b) +m(1− a) + k

or292

λ ≤ 1− c

ma+ (1−m)b− kd
.

Since a ≥ b, it is clear that the right-hand side of this inequality is less than or equal to λ∗.293

Hence, if λ > λ∗, then S4 will also earn less payoff than S3. As to S1, π(S1, (1−λ)R2+λR3) ≤294

π(S3, (1− λ)R2 + λR3) if295
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λ [(1−m)(1− b− c) +m(1− a)] + (1− λ) [(1−m)(1− b− kd) +m(1− a) + k)]

≤ (1−m)(1− b) +m(1− a) + k,

which is clearly always the case since c, kd ≥ 0. We already know that (2) implies that there296

is no donor strategy which does better against S3 than either R2 or R3. The relation (5) can297

be proved similarly. These arguments also show that both kinds of lines of Nash equilibria are298

quasi-strict (and neutrally stable in the symmetrised game) under the appropriate existence299

conditions, since donor strategies not in the support of those equilibria earn less payoff than300

the strategies in their support.301

Let us consider the line of strategy profiles given by (S3, (1− λ)R2 + λR3). Rest points302

in the relative interior of this line attract an open set of nearby initial population states.303

This follows from the centre-manifold theorem (Carr, 1981), together with the fact that304

all transversal eigenvalues of the Jacobian matrix of (8) evaluated at those rest points are305

negative. The latter fact is shown by the calculations above.306

B Alternative equilibria307

Under certain conditions, (S1, R1) is a strict Nash equilibrium. Note that the condition for308

donors to transfer the resource must be the same as for the equilibrium (1), i.e. a ≥ d/k ≥ b.309

The reason for this is that the decision problem of the donor is the same in both cases. As310

to the sender strategies, we have to find the conditions under which Si, i = 2, 3, 4, earn less311

payoff against R1 than S1 does. Concerning S3, π(S1, R1) ≥ π(S3, R1) if312

(1−m)(1− b− c+ k) +m(1 + k(1− d)) ≥ 1 + k(1− d).

This is the case if and only if kd− c ≥ b. Similarly, π(S1, R1) ≥ π(S4, R1) if313
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(1−m)(1− b− c+ k) +m(1 + k(1− d)) ≥ (1−m)(1− b− c+ k) +m(1− a− c+ k),

which is equivalent to a ≥ kd− c. The relation b ≤ kd− c implies d ≥ (b+ c)/k, and thus314

1 + k(1− d) ≤ 1− b− c+ k.

Furthermore, a ≥ kd− c implies315

1− a− c+ k ≤ 1 + k(1− d).

From these two inequalities it follows that316

(1−m)(1− b− c+ k) +m(1 + k(1− d)) ≥ (1−m)(1 + k(1− d)) +m(1−m)(1− a− c+ k),

which is the same as π(S1, R1) ≥ π(S2, R1).317

We next prove the location of (p,q) = ((λS2 + (1− λ)S4), (µR2 + (1− µ)R3)), 0 <318

λ, µ < 1. In order to do this, we follow Hofbauer and Sigmund (1998, 10.4). The relevant319

payoff information for the game restricted to K = span(S2, S4)× span(R2, R3) is contained320

in the two payoff matrices321

A =

 0 a12

a21 0

 B =

 0 b12

b21 0

 ,
where322
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a12 = π(S2, R3)− π(S4, R3) = (1−m)c

a21 = π(S4, R2)− π(S2, R2) = (1−m)(b− kd− c)

b12 = π(R2, S4)− π(R3, S4) = k((1−m)b+ma)− d

b21 = π(R3, S2)− π(R2, S2) = m(d− ka)

As shown in Hofbauer and Sigmund (1998, 10.4), a unique interior equilibrium exists if323

a12a21 > 0 and b12b21 > 0. Since c > 0, we must have b− kd > c. If b12 > 0, then (p,q) is a324

saddle (provided that b12b21 > 0). We will instead focus on the more interesting case where325

b12, b21 < 0. This means that condition (2) is met and that ka > d. The rest point (p,q) is326

given by327

λ =
b12

b12 + b21

=
k((1−m)b+ma))− d

(1−m)(kb− d)
µ =

a12

a12 + a21

=
c

b− kd
.

Now a12b12 < 0, and hence the Jacobian matrix of (8) evaluated at (p,q) has purely imagi-328

nary eigenvalues (Hofbauer and Sigmund, 1998, 10.4).329

We next show that all transversal eigenvalues of the Jacobian matrix of (8) at (p,q)330

are negative. For the sender, the transversal eigenvalues are given by πi(q) − π(p,q) for331

i = 1, 3. It is easy to show that π1(q) < π(p,q) and π3(q) < π(p,q) if µ > c/(a − kd).332

The transversal eigenvalue π1(p)− π(q,p) is negative if and only if d > bk. Both conditions333

follow straightforwardly from our assumptions. Similarly, π4(p) < π(q,p) if (2) holds. That334

the polymorphism (6) is a spiraling centre follows from the centre-manifold theorem (Carr,335

1981). In our case, this manifold coincides with an open neighborhood in K around the336

polymorphism (6). Nearby solution trajectories approach the centre manifold exponentially.337

But on K, solution trajectories spiral around (6) forever. We also note that the polymorphic338

equilibrium is a Nash-Pareto pair (Hofbauer and Sigmund, 1998, 11.4). This means that the339

polymorphic equilibrium is almost as stable as a strict Nash equilibrium.340
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